Source-Language Features and Maximum Correlation Training for Machine Translation Evaluation
نویسندگان
چکیده
We propose three new features for MT evaluation: source-sentence constrained n-gram precision, source-sentence reordering metrics, and discriminative unigram precision, as well as a method of learning linear feature weights to directly maximize correlation with human judgments. By aligning both the hypothesis and the reference with the sourcelanguage sentence, we achieve better correlation with human judgments than previously proposed metrics. We further improve performance by combining individual evaluation metrics using maximum correlation training, which is shown to be better than the classification-based framework.
منابع مشابه
The Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language
Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...
متن کاملMaximum Correlation Training for Machine Translation Evaluation
We propose three new features for MT evaluation: source-sentence constrained n-gram precision, source-sentence reordering metrics, and discriminative unigram precision, as well as a method of learning linear feature weights to directly maximize correlation with human judgments. Our source-sentence constrained n-gram precision achieves, among all the testing metrics including BLEU, NIST, ROUGE, ...
متن کاملA new model for persian multi-part words edition based on statistical machine translation
Multi-part words in English language are hyphenated and hyphen is used to separate different parts. Persian language consists of multi-part words as well. Based on Persian morphology, half-space character is needed to separate parts of multi-part words where in many cases people incorrectly use space character instead of half-space character. This common incorrectly use of space leads to some s...
متن کاملTHUMT: An Open Source Toolkit for Neural Machine Translation
This paper introduces THUMT, an opensource toolkit for neural machine translation (NMT) developed by the Natural Language Processing Group at Tsinghua University. THUMT implements the standard attention-based encoder-decoder framework on top of Theano and supports three training criteria: maximum likelihood estimation, minimum risk training, and semi-supervised training. It features a visualiza...
متن کاملTranslation Evaluation in Educational Settings for Training Purposes
The following article describes different methods and techniques used in educational settings for translation evaluation. Translation evaluation is the placing of value on a translation i.e. awarding a mark, even if only a binary pass/fail one. In the present study, different features of the texts chosen for evaluation were firstly considered and then scoring the t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007